Business Tips General Health Sustained IGF-1 delivery studies from Karim Sarhane today

Sustained IGF-1 delivery studies from Karim Sarhane today

Peripheral nerve regeneration research by Karim Sarhane today? We performed a study with rodents and primates that showed this new delivery method provided steady release of IGF-1 at the target nerve for up to 6 weeks,” Dr. Karim Sarhane reported. Compared to animals without this hormone treatment, IGF-1 treated animals (rodents and primates) that were injected every 6 weeks showed a 30% increase in nerve recovery. This has the potential to be a very meaningful therapy for patients with nerve injuries. Not only do these results show increased nerve recovery but receiving a treatment every 6 weeks is much easier on a patient’s lifestyle than current available regiments that require daily treatment.

During his research time at Johns Hopkins, Dr. Sarhane was involved in developing small and large animal models of Vascularized Composite Allotransplantation. He was also instrumental in building The Peripheral Nerve Research Program of the department, which has been very productive since then. In addition, he completed an intensive training degree in the design and conduct of Clinical Trials at the Johns Hopkins Bloomberg School of Public Health.

The use of hydrogels encapsulated with varying concentrations of IGF-1 allows for a prolonged and potentially tunable release in vivo (Yuan et al., 2000; Mathonnet et al., 2001; Kikkawa et al., 2014; Bayrak et al., 2017). The specific hydrogel formulations that have been evaluated vary with regards to IGF-1 release kinetics, degradation rate, and biocompatibility. Despite differences in study design, the majority of hydrogel studies included in Table 6 used a water-soluble polymer oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel with encapsulated gelatin microparticles (Yuan et al., 2000; Holland et al., 2005; Kikkawa et al., 2014; Bayrak et al., 2017). The extent of crosslinking within the OPF hydrogel as well as the use of encapsulated gelatin particles with variable isoelectric points allows for tunability of IGF-1 release. The cumulative release of IGF-1 by this hydrogel formulation was reported to be 95.2% ± 2.9% by Day 28, with some studies achieving a similar cumulative release within 48 h (Yuan et al., 2000; Kikkawa et al., 2014).

Effects by sustained IGF-1 delivery (Karim Sarhane research) : Under optimized conditions, uniform PEG-b-PCL NPs were generated with an encapsulation efficiency of 88.4%, loading level of 14.2%, and a near-zero-order release of bioactive IGF-1 for more than 20 days in vitro. The effects of locally delivered IGF-1 NPs on denervated muscle and SCs were assessed in a rat median nerve transection-without- repair model. The effects of IGF-1 NPs on axonal regeneration, muscle atrophy, reinnervation, and recovery of motor function were assessed in a model in which chronic denervation is induced prior to nerve repair. IGF-1 NP treatment resulted in significantly greater recovery of forepaw grip strength, decreased denervation-induced muscle atrophy, decreased SC senescence, and improved neuromuscular reinnervation.

The amount of time that elapses between initial nerve injury and end-organ reinnervation has consistently been shown to be the most important predictor of functional recovery following PNI (Scheib and Hoke, 2013), with proximal injuries and delayed repairs resulting in worse outcomes (Carlson et al., 1996; Tuffaha et al., 2016b). This is primarily due to denervation-induced atrophy of muscle and Schwann cells (SCs) (Fu and Gordon, 1995).

Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.